WEBVTT
00:00:03.010 --> 00:00:05.560
Which of the following matrices is symmetric?
00:00:06.320 --> 00:00:14.510
(A) The matrix negative four, negative four, two, negative four, eight, negative two, eight, negative two, three.
00:00:15.330 --> 00:00:24.200
(B) The matrix negative two, three, five, three, negative four, negative three, five, negative three, negative seven.
00:00:25.050 --> 00:00:33.790
(C) The matrix negative two, four, negative three, four, negative eight, negative eight, nine, negative three, negative two.
00:00:34.400 --> 00:00:44.410
Or (D) the matrix negative three, negative five, negative one, negative six, six, five, negative seven, seven, negative eight.
00:00:45.560 --> 00:00:49.420
Let’s begin by recalling what it means for a matrix to be symmetric.
00:00:50.320 --> 00:00:58.830
A matrix is symmetric if it is equal to its transpose, the matrix formed by swapping the rows and columns of the original matrix around.
00:00:59.460 --> 00:01:10.140
A matrix can only be symmetric if it is a square matrix, as the number of rows and columns must be the same so that both the matrix and its transpose are of the same order.
00:01:10.940 --> 00:01:15.330
Each of the matrices we’ve been given as options have three rows and three columns.
00:01:15.530 --> 00:01:18.940
So they’re each square matrices of order three by three.
00:01:19.170 --> 00:01:23.910
And so, at this stage, it’s possible that any of them could be symmetric matrices.
00:01:24.380 --> 00:01:28.660
To answer this question, let’s find the transpose of each matrix.
00:01:29.600 --> 00:01:33.080
Remember, we do this by swapping the rows and columns around.
00:01:33.080 --> 00:01:38.090
So we may find it helpful to write each column of the original matrix in a different color.
00:01:38.990 --> 00:01:43.460
The first column of this matrix becomes the first row in its transpose.
00:01:44.190 --> 00:01:46.590
The second column becomes the second row.
00:01:47.270 --> 00:01:49.510
And then the third column becomes the third row.
00:01:49.800 --> 00:01:59.320
So the transpose of matrix 𝐴 is the matrix negative four, negative four, eight, negative four, eight, negative two, two, negative two, three.
00:02:00.150 --> 00:02:08.680
Now, in order for matrices to be equal, it must be the case that every element in one matrix is equal to the corresponding element in the other.
00:02:09.540 --> 00:02:15.170
We can see that this is true for certain elements in the matrices 𝐴 and 𝐴 transpose.
00:02:15.850 --> 00:02:18.980
However, there are some elements for which this is not the case.
00:02:19.220 --> 00:02:25.880
So the matrix 𝐴 transpose is not equal to the matrix 𝐴, and so it is not a symmetric matrix.
00:02:26.920 --> 00:02:28.780
Let’s now consider matrix 𝐵.
00:02:28.980 --> 00:02:32.030
And once again, we write each column in a different color.
00:02:33.050 --> 00:02:40.080
We can fill in the first row in the transpose matrix, then the second, and finally the third.
00:02:40.080 --> 00:02:50.460
And we find that the transpose of matrix 𝐵 is the matrix negative two, three, five, three, negative four, negative three, five, negative three, negative seven.
00:02:51.450 --> 00:03:00.600
This time, when we compare the two matrices, we can see that every element in the matrix 𝐵 is equal to the corresponding element in the matrix 𝐵 transpose.
00:03:01.340 --> 00:03:07.740
So the matrix 𝐵 is equal to its own transpose, and hence the matrix 𝐵 is symmetric.
00:03:08.330 --> 00:03:11.380
We also need to check matrices 𝐶 and 𝐷, however.
00:03:12.480 --> 00:03:22.480
The matrix 𝐶 transpose is equal to negative two, four, nine, four, negative eight, negative three, negative three, negative eight, negative two.
00:03:23.640 --> 00:03:32.070
This time, we see that whilst there are certain elements that are the same in the matrix 𝐶 and its transpose, this isn’t true for every element.
00:03:32.300 --> 00:03:38.040
And so the matrix 𝐶 transpose is not equal to the matrix 𝐶, and so it is not symmetric.
00:03:39.040 --> 00:03:52.750
Finally, we find the transpose of matrix 𝐷, which is equal to the matrix negative three, negative six, negative seven, negative five, six, seven, negative one, five, negative eight.
00:03:53.810 --> 00:04:02.260
This time, we find that the only elements that are the same in both the transpose matrix and the original matrix are those on the leading diagonal.
00:04:02.620 --> 00:04:06.010
All other elements are different in the two matrices.
00:04:06.280 --> 00:04:10.480
And so the matrix 𝐷 is not a symmetric matrix.
00:04:11.470 --> 00:04:27.070
We found that the only one of the four matrices which is symmetric, so it is equal to its own transpose, is matrix 𝐵, the matrix negative two, three, five, three, negative four, negative three, five, negative three, negative seven.